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Abstract
We illustrate the renormalized perturbation expansion method by applying it to a
single-impurity Anderson model. Previously, we have shown that this approach
gives the exact leading-order results for the specific heat, spin and charge
susceptibilities and leading-order temperature dependence of the resistivity for
this model in the Fermi-liquid regime, when carried out to second order in
the renormalized interaction Ũ . Here we consider the effects of higher-order
quasiparticle scattering and calculate the third-order contributions to the H 3-
term in the impurity magnetization for the symmetric model in a weak magnetic
field H . The result is asymptotically exact in the weak-coupling regime, and
is very close to the exact Bethe ansatz result in the Kondo regime. We also
calculate the quasiparticle density of states in a magnetic field, which is of
interest in relation to recent experimental work on quantum dots.

1. Introduction

Systems with strong local inter-electron interactions have been the focus of much theoretical
work in recent years, as these include a variety of interesting systems ranging from high-
Tc superconductors, heavy fermions and Mott insulators, to mesoscopic systems such as
quantum dots. Conventional perturbation theory cannot deal with strong interactions in
general, so new techniques have to be developed to make predictions for the behaviour of
such systems. Specialized techniques, such as the Bethe ansatz or conformal field theory,
have been successfully developed for certain classes of systems, such as one-dimensional
systems and impurity models. However, techniques are required that can be applied more
generally, particularly for systems in two and three dimensions. One approach which has
been extended to a wider class of problems is the numerical renormalization group approach
(NRG) as developed by Wilson [1], which was originally successfully applied to models
of magnetic impurities. In this approach the higher-energy excitations are progressively
eliminated to deduce a sequence of effective models for the behaviour on lower and lower
energy scales. The behaviour on the lowest energy scales can be calculated from the limiting
fixed-point Hamiltonian of this sequence, and its leading correction terms. In its original form
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the method only works for impurity systems but a modified form of the approach, the density
matrix renormalization group method (DMRG) [2,3], has been successfully developed for one-
dimensional systems. In principle the DMRG could be extended to two and three dimensions
but there are technical difficulties in practice, though some calculations for two-dimensional
systems have been carried out. In another development the NRG has also been extended to
higher-dimensional lattice models by use of dynamical mean-field theory (DMFT) [4]. This
approach exploits the fact that certain infinite-dimensional lattice models, such as the Hubbard
and periodic Anderson models, can mapped onto effective impurity models, together with
a self-consistency condition [5, 6]. The calculations for the effective impurity models can
be carried out using the NRG and iterated until the self-consistency condition is satisfied.
The DMFT has considerably extended the potential range of application of the NRG. The
NRG, however, is not the only way of realizing renormalization group ideas. The earlier
way of applying the renormalization group, as originally developed in field theory, was via a
reorganization of the perturbation expansion, such that the expansion could be carried out in
terms of the renormalized parameters. This rearrangement of perturbation theory enabled one
to circumvent the problem of the divergences which had plagued the conventional approaches.
The elimination of the divergences, however, was essentially a by-product of this approach and
it is possible to use the reorganization of the perturbation expansion as a strategy for dealing with
the low-energy behaviour of a wide variety of systems. The renormalized perturbation theory
approach could be particularly useful in situations where there are strong renormalizations of
the basic parameters, such as in the Fermi-liquid regime for heavy fermions, where the masses
of the electrons may be renormalized by factors of the order of 1000.

In earlier work [7] we have shown how the renormalized perturbation theory can be
applied to impurity models. In particular, we have shown that this approach, when applied to
the Anderson impurity model and carried out to second order in the renormalized interaction
Ũ , gives the exact leading-order results for the specific heat, spin and charge susceptibilities
at T = 0 and the leading-order temperature dependence of the resistivity in the Fermi-liquid
regime. In this paper we begin with a brief review of these earlier results, and we then
calculate some higher-order corrections; in particular, we calculate theH 3-term for the impurity
magnetization in a weak magnetic field H to third order in the renormalized interaction term
Ũ , and compare the results with the exact Bethe ansatz result. In the final section we calculate
the quasiparticle density of states in a magnetic field. These latter results are of some interest
in comparing with the low-temperature linear response results on quantum dots in the presence
of a magnetic field.

2. Renormalized perturbation theory

We formulate the renormalized perturbation expansion for the impurity Anderson model [8].
The Hamiltonian for this model is

H =
∑
σ

εdd
†
σ dσ + Und,↑nd,↓ +

∑
k,σ

(Vkd
†
σ ck,σ + V ∗

k c
†
k,σ dσ ) +

∑
k,σ

εk,σ c
†
k,σ ck,σ (1)

which describes an impurity d level εd, hybridized with conduction electrons of the host metal
via a matrix element Vk , with a term U describing the interaction between the electrons in
the localized d state, where nd,σ = d†

σ dσ . The width of the localized bound state for U = 0
depends on the quantity�(ω) = π

∑
k |Vk|2δ(ω−εk). For a conduction without any prominent

features this function does not have a strong dependence on ω, so it is usual to take the case
of a wide conduction band with a flat density of states where �(ω) becomes independent of ω
and can be taken as a constant, �. The partition function Z for this model can be expressed as
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a functional integral over imaginary time-dependent Grassmann variables, corresponding to
the electron creation and annihilation operators, using standard methods (see for example [9]):

Z =
∫ ∏

σ

D(d̄σ ) D(dσ ) D(c̄k,σ ) D(ck,σ ) e−S (2)

where the action S is given by

S =
∫ β

0
LAM(τ ) dτ (3)

and the Lagrangian for the Anderson model is given by

LAM(τ ) =
∑
σ

d̄σ (τ )(∂τ − εd)dσ (τ ) +
∑
k,σ

c̄k,σ (τ )(∂τ − εk)ck,σ (τ )

+ Un↑(τ )n↓(τ ) +
∑
σ

Vk(d̄σ (τ )ck,σ (τ ) + c̄k,σ (τ )dσ (τ )) (4)

where nσ (τ ) = d̄σ (τ )dσ (τ ). One can formally integrate over the Grassmann variables for the
conduction electrons, as they involve only quadratic terms, and express the result in terms of
a reduced action Sred:

Z =
∫ ∏

σ

D(d̄σ ) D(dσ ) e−Sred (5)

where Sred is given by

Sred =
∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

d̄σ (τ )[G
(0)
σ (τ − τ ′)]−1dσ (τ

′) + U

∫ β

0
dτ n↑(τ )n↓(τ ) (6)

with G(0)
σ (τ ) = (1/β)

∑
n G

(0)
σ (iωn)e−iωnτ , where ωn = (2n + 1)π/β. The non-interacting

Green’s function for the localized electron G(0)
σ (iωn) is given by

G(0)
σ (iωn) = 1

iωn + σh − εd + i� sgn(ωn)
(7)

where we have included a coupling to a magnetic field H and h is given by h = gµBH/2.
The Grassmann variables are required to satisfy the antiperiodic boundary conditions d̄(β) =
−d̄(0) and d(β) = −d(0).

The Fourier transform of the corresponding retarded one-particle double-time Green’s
function G(0)

dσ (ω) for the localized d electron can be deduced by analytically continuing to real
frequencies, iωn → ω + iδ (δ → +0). On introducing a corresponding self-energy �σ(ω, h)

the interacting retarded Green’s function can be written in the form

Gσ(ω) = 1

ω − εd + σh + i� − �σ(ω, h)
. (8)

In the conventional perturbation expansion this self-energy is calculated in powers of the
interaction U . It will be convenient to write the self-energy in the form �σ(ω+σh, h) because
the non-interacting Green’s functions, which are the propagators in the perturbation expansion,
are functions of the combined variable ω + σh. In the renormalized perturbation theory the
perturbation expansion is reorganized to a form appropriate for the low-energy regime. The
first step is to write the self-energy in the form

�σ(ω + σh, h) = �σ(0, 0) + (ω + σh)�′
σ (0, 0) + �rem

σ (ω, h) (9)

which does nothing more than define the remainder self-energy �rem
σ (ω + σh, h), except that

we have assumed Luttinger’s result [11] that �′
σ (0, 0) is real. When this is substituted back
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into equation (8), the Green’s function takes the same form with a ‘renormalized’ energy level,
width of the localized state and self-energy, which are denoted by a tilde, defined by

ε̃d = z(εd + �σ(0, 0)) �̃ = z� �̃σ (ω, h) = z�rem
σ (ω, h) (10)

where z, the wavefunction renormalization factor, is given by z = 1/(1 − �′
σ (0, 0)), and

�σ(0, 0) and �′
σ (0, 0) are to be evaluated at T = 0 as well as ω = h = 0. These will be

the parameters of the renormalized theory instead of εd and �, which are specified in the
’bare’ Hamiltonian of equation (1). Note that the g-factor coupling to the magnetic field
H is unrenormalized. The overall z-factor is removed by rescaling the Grassmann fields,
dσ (τ ) → √

zd̃σ (τ ).
The last parameter specifying the renormalized theory is the renormalized interaction

Ũ . This quantity is derived from the irreducible four-point vertex function (‘four-vertex’)
�σ,σ ′(ω, ω′), which is a special case of the more general irreducible four-point vertex function
�
σ ′′,σ ′′′
σ,σ ′ (ω, ω′;ω′′, ω′′′) with σ ′′ = σ , σ ′′′ = σ ′, ω′′ = ω and ω′′′ = ω′. This latter quantity

is derived from the two-particle Green’s function of the d electrons in the usual way. The
renormalized four-point vertex function is defined by �̃σ,σ ′(ω, ω′) = z2�σ,σ ′(ω, ω′), and takes
account of the rescaling of the local fermion fields. The renormalized interaction Ũ is then
defined by the value of �̃σ,σ ′(ω, ω′) at ω = ω′ = 0:

Ũ = �̃σ,σ ′(0, 0). (11)

As certain of the interaction effects are taken into account ab initio in the renormalized
theory, compensating terms have to be introduced to avoid overcounting. The Lagrangian for
the Anderson model can be rewritten in the form

LAM(d̄σ , dσ , εd,�,U) = LAM(
˜̄dσ , d̃σ , ε̃d, �̃, Ũ ) + LCT(

˜̄dσ , d̃σ , λ1, λ2, λ3) (12)

in terms of the renormalized fields, where the counter-term Lagrangian is given by

LCT(
˜̄dσ , d̃σ , λ1, λ2, λ3) = ˜̄dσ (τ )(λ2 ∂τ + λ1)d̃σ + λ3ñ↑(τ )ñ↓(τ ) (13)

where λ1 = −z�(0, 0), λ2 = z − 1 and λ3 = z2(U − �↑,↓(0, 0)). By construction, the
renormalized self-energy �̃σ (ω, 0) is such that

�̃σ (0, 0) = 0 �̃′
σ (0, 0) = 0 (14)

so �̃σ (ω, 0) = O(ω2) for small ω, on the assumption that it is analytic at ω = 0. As
�̃σ,σ (0, 0) = 0, we also have

�̃σ,σ ′(0, 0) = Ũ (1 − δσ,σ ′). (15)

The quasiparticle or renormalized Green’s function takes the form

G̃σ (ω) = 1

ω − ε̃d + σh + i�̃ − �̃σ (ω, h)
. (16)

The reorganized perturbation theory is set up to calculate the renormalized self-energy
�̃σ (ω, h). The propagators in this expansion correspond to the non-interacting quasiparticles
in the Lagrangian LAM(d̄σ , dσ , εd,�,U) with Ũ = 0. The quasiparticle interaction Ũ is used
as an expansion parameter but all the terms in the counter-Lagrangian LCT have to be included
as well. To organize the expansion in powers of Ũ , the terms λ1, λ2 and λ3 have also to be
expressed in powers of Ũ :

λ1 =
∞∑
n=0

λ
(n)
1

(
Ũ

π�̃

)n

λ2 =
∞∑
n=0

λ
(n)
2

(
Ũ

π�̃

)n

λ3 =
∞∑
n=0

λ
(n)
3

(
Ũ

π�̃

)n

. (17)

The coefficients λ
(n)
1 , λ(n)2 and λ

(n)
3 are then determined by the requirement that the three

normalization conditions (14) and (15) are satisfied by each order in the expansion. These
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normalization conditions are essentially those used within field theory in order to circumvent
the problem of infinities arising from the lack of an ultraviolet cut-off (see for example [10]).
The procedure, however, makes no mention of infinities; it simply allows the field theoretic
perturbation expansion to be expressed in terms of the experimentally observed masses and
interactions. In condensed matter systems divergences do not arise in this way, as there
is always a natural cut-off, so there is no necessity to reorganize the perturbation expansion.
However, for the Anderson model there are very strong renormalizations of the effective d level
and the interactions at low energies in the Kondo regime, where the impurity d electrons are
virtually localized, which make it desirable when working in this regime to take account of
these very strong renormalizations from the start. This allows one to develop a perturbation
theory with an effective d level and interactions appropriate to this energy scale. More generally
it makes a direct link to Landau Fermi-liquid theory. There are no cut-off-dependent ultraviolet
divergences to eliminate, so the question of the renormalizability of the model does not arise.

We can obtain significant results with this approach even at zero order, Ũ = 0. If we
calculate the quasiparticle occupation number ñd,σ at T = 0 andH = 0 from (16) with Ũ = 0,
we find

ñd,σ = 1

2
− 1

π
tan−1

(
ε̃d

�̃

)
. (18)

As the factors of z in this expression cancel it is equivalent to the exact Friedel sum rule [12]
and expresses the one-to-one correspondence between the quasiparticle number and electron
number in Landau Fermi-liquid theory [14], ñd,σ = nd,σ . Hence, the d-level occupation at
T = 0 can be calculated from the zero-order renormalized Green’s function.

The Friedel sum rule also holds in the presence of a magnetic field and the equivalent
expression for the occupation of the d level in terms of the renormalized self-energy is given
by

nd,σ = 1

2
− 1

π
tan−1

(
ε̃d − σh + �̃σ (0, h)

�̃

)
. (19)

We have to use the perturbation theory to calculate the field dependence of the renormalized
self-energy. However, we can show that it is sufficient to work only to first order in Ũ to
obtain the exact result. There are two terms to first order, one from the tadpole or Hartree
diagram and one from the corresponding counter-term diagram in λ1. There is no wave-
function renormalization to this order, so λ

(1)
2 = 0, and also to this order �̃↑,↓(0, 0) = Ũ ,

so λ
(1)
3 = 0. To satisfy the renormalization conditions the counter-term should cancel the

contribution from the tadpole diagram for T = h = 0, so λ1 = Ũn
(0)
d,−σ (0, 0). Hence the

combined contribution is

�̃(1)
σ (ω, h, T ) = Ũ (n

(0)
d,−σ (h, T ) − n

(0)
d,−σ (0, 0)). (20)

The spin susceptibility of the d electrons at T = 0 can be calculated from gµB(nd,↑ −nd,↓)/2,
by substituting the self-energy from (20) into equation (19), and then differentiating with
respect to H . The charge susceptibility can be calculated in a similar way and the two results
are

χd = (gµB)
2

2
ρ̃d(0)(1 + Ũ ρ̃d(0)) χd,c = 2ρ̃d(0)(1 − Ũ ρ̃d(0)) (21)

where ρ̃d(0) is the quasiparticle density of states at the Fermi level and is given by

ρ̃d(0) = �̃/π

ε̃2
d + �̃2

. (22)
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It is not obvious that these results to first order in Ũ are exact. However, there are Ward
identities [13] which can be derived from charge and spin conservation, and in terms of the
renormalized self-energy and density of states take the form

∂�̃σ (ω)

∂h

∣∣∣∣
ω=0

= ∂�̃σ (ω)

∂µ

∣∣∣∣
ω=0

= −ρ̃d,σ (0)Ũ . (23)

The spin and charge susceptibilities can be derived from these exact relations on using (19) to
give

χd = (gµB)
2

2
ρ̃d(0)(1 − ∂�̃/∂h) = (gµB)

2

2
ρ̃d(0)(1 + Ũ ρ̃d(0)) (24)

and

χd,c = 2ρ̃d(0)(1 + ∂�̃/∂µ) = 2ρ̃d(0)(1 − Ũ ρ̃d(0)) (25)

confirming that the first-order results for these quantities are indeed exact.
The impurity contribution to the low-temperature specific heat coefficient from the non-

interacting quasiparticles (Ũ = 0) is given simply by

γd = 2π2

3
ρ̃d(0). (26)

This result corresponds to the exact result calculated by Yamada [13]. It is a general feature
of Fermi-liquid theory that the quasiparticle interactions do not give any corrections to the
linear coefficient of specific heat as their contributions to the specific heat are of higher order
in temperature.

In the local moment or Kondo regime the local charge susceptibility must go to zero,
so from equation (21) we find Ũ ρ̃d(0) = 1. If we define the Kondo temperature TK by
χd = (gµB)

2/4TK then ρ̃d(0) = 1/4TK and all the results can be written in terms of TK. They
correspond to the exact results for the s–d or Kondo model [15, 16].

From the exact Bethe ansatz results [15, 16] for the spin and charge susceptibility for the
symmetric Anderson model it is possible to deduce the renormalized parameters, �̃ and Ũ , in
terms of the bare parameters � and U . These are shown in figure 1. Initially Ũ ∼ U for small
U , but when U/π� > 2, the energy scales Ũ and π�̃ merge in the strong-coupling regime
and Ũ = π�̃ = 4TK.

To calculate the low-temperature conductivity to order T 2 one needs to calculate the
renormalized self-energy to order ω2 and T 2. There is a T 2-contribution to the conductivity
arising from the scattering of free quasiparticles by the impurity but there is an additional
contribution due to the mutual scattering of the quasiparticles due to the inter-quasiparticle
interactions. The lowest-order contribution of this type arises from the second-order diagram
for �̃ shown in figure 2(b). The only counter-term diagram that has to be taken into account
to order ω2 or T 2 is due to the second term in λ

(2)
2 , which is required to cancel the term linear

in ω arising from the diagram in figure 2(b), and this gives λ(2)2 = 3 −π2/4. We calculate this
for the case of particle–hole symmetry which is such that ε̃d = −Ũ/2 and nd(T ) = 1. The
contribution to the imaginary part of the renormalized self-energy from figure 2(b) is

Im �̃(ω, T ) = πŨ 2
∫

ρ̃d(ε)ρ̃d(ε
′)ρ̃d(ω − ε − ε′)D(ω, ε, ε′) dε dε′ (27)

where

D(ω, ε, ε′) = (1 − f (ε) − f (ε′))f (ε + ε′ − ω) + f (ε)f (ε′) (28)

and f (ε) is the Fermi factor 1/(1 + eβε) with β = 1/T . To calculate the conductivity to order
T 2 we need to evaluate this integral to order ω2 for T = 0. For T = 0 equation (28) becomes

D(ω, ε, ε′) = (θ(ε) + θ(ε′) − 1)θ(ω − ε − ε′) + (1 − θ(ε))(1 − θ(ε′)) (29)
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Figure 1. A plot of the renormalized parameters Ũ and π�̃ for the symmetric Anderson model
in terms of the bare parameters U and π�. In the comparison of these parameters with 4TK for
U � π� the value of TK is given in equation (B.9).

�
��

�
�

��

��

(a) (b)

Figure 2. The skeleton tadpole diagram, (a), and second-order self-energy diagram, (b).

where θ(x) is the step function. To find the ω2-coefficient we differentiate twice with respect
to ω and use the relations

∂θ(x)

∂x
= δ(x)

∂2θ(x)

∂x2
= δ′(x). (30)

As ρ̃d(0) = 1/π�̃ for the case of particle–hole symmetry, the result is

Im �̃(ω, 0) = −π

2
Ũ 2ρ̃d(0)

3ω2 = − ω2

2�̃

(
Ũ

π�̃

)2

. (31)

We need the corresponding results to orderT 2 forω = 0. Forω = 0 the temperature-dependent
factor in the integrand of (28) is

D(0, ε, ε′) = 2f (ε)f (ε′)(1 − f (ε + ε′)). (32)

We can change the variables of integration to x and x ′, where x = εT and x ′ = ε′T , and the
integral of equation (27) to order T 2 becomes

Im �̃(0, T ) = −T 2

�̃

(
U

π�̃

)2 ∫ ∞

−∞

∫ ∞

−∞
2F(x)F (x ′)(1 − F(x + x ′)) dx dx ′ (33)
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where F(x) = 1/(1 + ex). The integration over x ′ can be carried out to give

Im �̃(0, T ) = T 2

�̃

(
U

π�̃

)2 ∫ ∞

−∞

x

sinh x
dx = π2T 2

2�̃

(
U

π�̃

)2

. (34)

To evaluate the conductivity we need to evaluate the transport relaxation lifetime τ(ω, T )

which is proportional to the inverse of the impurity density of states ρd(ω, T ) which in turn is
proportional to the imaginary part of the renormalized Green’s function, so

τ(ω, T ) ∝ πρ̃d(ω, T )
−1 = �̃ − Im �̃(ω, T ) +

(ω − Re �̃(ω, T ))2

(�̃ − Im �̃(ω, T ))
. (35)

When these results are used to evaluate the contribution to the impurity conductivity σimp(T )

to order T 2 we find

σimp(T ) = σ0

{
1 +

π2

3

(
T

�̃

)2

(1 + 2(R − 1)2) + O(T 4)

}
(36)

where R is the Wilson ratio given by R = 1 + Ũ/π�̃. This is an exact result to order T 2 which
was first derived by Nozières [17] for the Kondo regime, which corresponds to Ũ = π�̃ = 4TK

and R = 2. The more general result was derived by Yamada [13]. More recently Lesage and
Saleur [18] have also calculated the coefficients of the T 4- and T 6-terms in this expansion in
the Kondo regime, using boundary conformal field theory.

Nothing has been omitted in the renormalized perturbation expansion, and it gives the
asymptotically exact results in the low-temperature regime, when taken to second order in Ũ ,
so it would be interesting to extend the results by including higher-order terms. One possibility
would be to include all the terms to fourth order in Ũ , and calculate the coefficient of the next
correction term in the conductivity, the T 4-term, to compare the result with that of Lesage
and Saleur. However, this would be require an expansion of the self-energy in terms of both
the frequency and temperature for all the fourth-order terms, which, though straightforward
to carry out, would be a rather long and tedious exercise. An alternative way of examining
the contributions from the next-order terms would be to calculate the H 3-term in the field
dependence of the impurity magnetization in a weak magnetic field. The linear term in H

was given exactly by the first-order renormalized expansion. The coefficient of the H 3-term
is known exactly for the Kondo model at T = 0, and also for the symmetric Anderson model,
from Bethe ansatz calculations [15, 16]. The renormalized perturbation calculation of this
coefficient to order Ũ 3 is described in the next section.

3. Higher-order terms

We will perform the renormalized perturbation calculations here in a way slightly different but
equivalent to the one used in the previous section. It will have the advantage of not involving
the explicit use of counter-terms. We will also obtain an expression for the renormalized
parameters in terms of the bare ones, at least for weak coupling. We first of all use the standard
perturbation theory in U , and then calculate the renormalized parameters explicitly to the
appropriate order. We can invert this relation and then write the standard perturbation result
in terms of the renormalized parameters, i.e. we renormalize the standard perturbation terms
order by order using the renormalization conditions (10) and (11). The result will correspond
to the renormalized expansion in Ũ , as described in the previous section, when taken to the
same order.
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3.1. Third-order perturbation theory

We use the zero-temperature formalism where the impurity Green’s function can be written in
the form

Gσ(ω, h) = 1

ω − εd + σh + i� sgn(ω) + �σ(ω, h)
(37)

where h = gµBH/2. An expression for the impurity magnetization in terms of the magnetic
field-dependent self-energy at T = 0 can be derived from the Friedel sum rule, where the
impurity level occupation number nd,σ in the spin channel σ is given by

nd,σ = 1

2
− 1

π
tan−1

(
εd − σh + �σ(0, h)

�

)
(38)

which is equivalent to equation (19). We can deduce from this an expression for the induced
impurity magnetization, and expand it to order h3. However, it will be useful to separate out the
skeleton tadpole diagram shown in figure 2(a), which has the full Green’s function, indicated
by a double propagator, in the bubble, as this is equal to Und,−σ , where nd,−σ is the exact
expectation value of the occupation number. We write the self-energy �σ(ω, h) in the form

�σ(ω, h) = Und,−σ + �̄σ (ω, h) (39)

and substitute it into equation (38). We write the impurity magnetization M(h) = gµB(nd,↑ −
nd,↓)/2 in a weak field as a power series:

M(h) = gµB

π

∑
n

M2n+1

(
h

�

)2n+1

. (40)

For the particle–hole-symmetric model (εd = −U/2) these coefficients in terms of the
self-energy �̄↑(0, h) are

M1 = 1

(1 − U/π�)

(
1 − ∂�̄↑(0, h)

∂h

∣∣∣∣
h=0

)
(41)

M3 = − 1

3(1 − U/π�)

(
M3

1 +
�2

2

∂3�̄↑(0, h)
∂3h

∣∣∣∣
h=0

)
. (42)

We have the results for the first derivative of the self-energy with respect to h to order U 3 from
the calculations of Yamada [13]:

M1 = 1 +
U

π�
+

(
3 − π2

4

)(
U

π�

)2

+

(
15 − 3π2

2

)(
U

π�

)3

. (43)

The only unknown term in the expression for the third-order magnetization to order U 3 is the
third-order derivative of the self-energy at zero frequency with respect to the magnetic field h.

To second order inU there is only one diagram which contributes to �̄σ (ω, h), that shown
in figure 2(b), which gives a contribution

�̄
(2b)
↑ (ω, h) = U 2

∫
G

(0)
↑ (ω − ω′, h)-p↓,h↓(ω′, h)

dω′

2π i
. (44)

The particle–hole propagator -pσ,hσ ′
and the corresponding particle–particle propagator

-pσ,hσ ′
are both evaluated in appendix A.

�̄
(2b)
↑ (0, h) = −h

(
2 − π2

4

)(
U

π�

)2

+
Ch3

3�2

(
U

π�

)2

(45)

where the coefficient C has been evaluated numerically, and we find a value C ≈ −1.735.



10020 A C Hewson

The third-order diagrams fall into two types. There are three diagrams shown in figure 3
corresponding to dressing each of the propagators in the second-order self-energy diagram
with a simple tadpole or zero-order Hartree term. For the symmetric model the contributions
from the first two diagrams, figures 3(a) and 3(b), cancel to first order in h but contribute to
higher order. The contribution from the diagram 3(a) in which the particle line is dressed with
a tadpole is

�̄
(3a)
↑ (ω, h) = U 3

π
tan−1

(
h

�

) ∫
(G

(0)
↓ (ω − ω′, h))2-p↑,h↓(ω′, h)

dω′

2π i
. (46)

�
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�
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�
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���

�

��

�

��

��
��

��

��

�

(a) (b) (c)

Figure 3. Third-order diagrams with a tadpole insertion.

The contribution from the corresponding diagram 3(b) in which the spin-down hole line
is dressed is

�̄
(3b)
↑ (ω, h) = U 3

π
tan−1

(
h

�

) ∫
(G

(0)
↓ (−ω + ω′, h))2-p↑,p↓(ω′, h)

dω′

2π i
. (47)

As -p↑,p↓(ω′, h) = −-p↓,h↓(ω′, h) and G
(0)
↓ (−ω + ω′, h) = −G

(0)
↑ (ω − ω′,−h), we can

rewrite this contribution as

�̄
(3b)
↑ (ω, h) = −U 3

π
tan−1

(
h

�

) ∫
(G

(0)
↓ (ω − ω′,−h))2-p↓,h↓(ω′, h)

dω′

2π i
. (48)

We are left with the contribution from the diagram in figure 3(c) in which the spin-↑ propagator
of a particle–hole bubble is dressed with a Hartree bubble:

�̄
(3c)
↑ (ω, h) = −U 3

π
tan−1

(
h

�

) ∫
(G

(0)
↑ (ω − ω′, h))2-p↓,h↓(ω′, h)

dω′

2π i
. (49)

The total result from the three diagrams to order h3 is

�̄
(3)
↑ (0, h) = −h

(
2 − π2

4

)(
U

π�

)3

+
Eh3

3�2

(
U

π�

)3

(50)

where the coefficient E is calculated numerically as −5.670.
Finally there are the two diagrams illustrated in figures 4(a) and 4(b), which can be regarded

as being derived from the second-order diagram, figure 2(b), with an intermediate scattering in
the subdiagram corresponding to one of the dynamic susceptibilities. The contribution from
the diagram in figure 4(a) is

�̄
(4a)
↑ (ω, h) = −U 3

∫
G

(0)
↓ (ω − ω′, h)(-p↑,h↓(ω′, h))2 dω′

2π i
(51)
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�
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� �

�� ��

��

(a) (b)

Figure 4. Third-order diagrams with repeated particle–hole scattering, (a), and particle–particle
scattering, (b).

with intermediate particle–hole scattering. For the diagram in figure 4(b) with intermediate
particle–particle scattering the contribution is

�̄
(4b)
↑ (ω, h) = −U 3

∫
G

(0)
↓ (ω′ − ω, h)(-p↑,p↓(ω′, h))2 dω′

2π i
. (52)

The total result is

�̄
(4a)
↑ (0, h) + �̄

(4b)
↑ (0, h) = −h(10 − π2)

(
U

π�

)3

+
Dh3

3�2

(
U

π�

)3

. (53)

The coefficient D was estimated numerically as D = 1.541.
Collecting the results to third order in U together,

M3 = −
{

1 + 4
U

π�
+ A

(
U

π�

)2

+ B

(
U

π�

)3
}

(54)

A = 16 − 3π2

4
+ C B = 80 − 27π2

4
+ C + D + E. (55)

The coefficients A and B can also be deduced from the Bethe ansatz results for the mag-
netization of the symmetric Anderson model by generalizing the approach of Horvatić and
Zlatić [19], who derived a recurrence relation for a series expansion in powers of U for the
coefficient M1, to obtain a similar expansion for M3. The details are given in appendix B. We
find A = 65/3 − 3π2/2 which gives C = 17/3 − 3π2/4 = −1.7355, in complete agreement
with the numerical estimate, and B = 15(280/27 − π2) = 7.512, which agrees well the
numerical estimate 7.515.

3.2. Renormalization

Having calculated all the self-energy terms to order U 3 using the standard perturbation theory
we want to deduce the corresponding results in the renormalized expansion to order Ũ 3.

We need to calculate the renormalized parameters, �̃ and Ũ , using the definitions given
in equations (10) and (11), in terms of the bare parameters to order U 3. For this we will
need the wavefunction renormalization factor z and the irreducible four-point vertex function
�↑,↓(0, 0, 0, 0). The only contribution to z to order U 3 comes from the second-order diagram
and the result is

z = 1 −
(

3 − π2

4

)(
U

π�

)2

+ O

[(
U

π�

)4
]

(56)
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which can also be deduced from the results in Yamada’s paper [13]. The contributions from
the diagrams for the irreducible vertex function �↑,↓(0, 0, 0, 0) to second order in U cancel in
the absence of a magnetic field. Diagrams which contribute at third order in U are shown in
figure 5. There are three possible diagrams of the type shown in figure 5(a) each one giving a
contribution U(U/π�)2. There are six other diagrams in all of the type shown in figures 5(b)
and 5(c), and each of these gives a contribution (2−π2/4)U(U/π�)2. The total to third order
in U is

�↑,↓(0, 0, 0, 0) = U

{
1 +

(
15 − 3π2

2

)(
U

π�

)2

+ · · ·
}
. (57)

From these two results we can deduce the renormalized parameters to order U 3:

�̃ = �

{
1 −

(
3 − π2

4

)(
U

π�

)2

+ · · ·
}

Ũ = U

{
1 − (π2 − 9)

(
U

π�

)2

+ · · ·
}
. (58)

These results correspond to the weak-coupling regionU � π� in the plot of the renormalized
parameters shown in figure 1.

We can invert these expression to deduce the bare parameters � and U in terms of the
renormalized ones, �̃ and Ũ :

� = �̃

{
1 +

(
3 − π2

4

)(
Ũ

π�̃

)2

+ · · ·
}

U = Ũ

{
1 + (π2 − 9)

(
Ũ

π�̃

)2

+ · · ·
}
. (59)
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Figure 5. Third-order contributions to the irreducible four-vertex �↑,↓(0, 0, 0, 0).

We now use these relations to express the third-order result in U for the magnetization in
terms of the renormalized parameters. It will be convenient to write (40) in a modified form:

M(h) = gµB

π

∑
n

M̃2n+1

(
h

�̃

)2n+1

. (60)



Renormalized perturbation calculations for the single-impurity Anderson model 10023

The coefficient M̄3 to third order in Ũ is given by

M̃3 =
{

1 + 4

(
Ũ

π�̃

)
+ A′

(
Ũ

π�̃

)2

+ B ′
(

Ũ

π�̃

)3
}

(61)

where

A′ = 7 + C B ′ = 5π2

4
− 4 + C + D + E. (62)

We know from the Ward identity (23) that the result to order h is exact to all orders in Ũ .
We know that the term of order h3 is asymptotically exact in the weak-coupling regime,
U/π� → 0, so it is of interest to check it in the strong-coupling limit against exact Bethe
ansatz results for the Kondo model. We use the results in the previous section to express
all of the renormalized parameters in terms of the Kondo temperature TK: Ũ/π�̃ → 1 and
π�̃ → 4TK as U → ∞. We then find

M(h)

gµB
= h

2TK
− D′ h

3π2

192T 3
K

(63)

where D′ = 5 + A′ + B ′ = 8 + 5π2/4 + 2C + D + E. With the values of the coefficients as
deduced from the third-order renormalized perturbation theory, we get D′ = 12.73. If the
exact Bethe ansatz result is written in the same form, using the same definition of TK, the
coefficient D′ has the value D′ = 24

√
3/π = 13.232. The error from our third-order results

is less than 4%. Hence the perturbation theory taken to third order, which is asymptotically
exact in the weak-coupling regime, is very close to the exact result for strong coupling.

As Ũ/π�̃ → 1 in the strong-coupling limit, the factor (Ũ/π�̃)n multiplying the contrib-
utions from the nth-order terms do not decrease with n, as they do in the weak-coupling limit
Ũ/π�̃ � 1. In appendix B we show that in the Kondo limit no finite set of renormalized
diagrams can give the h3-coefficient in the magnetization exactly. However, we have shown
that the error is small in the limit where the perturbation series is taken to third order, and
is even smaller for intermediate and weak coupling. This is clearly seen from the results
in figure 6 where we plot the coefficient M̃3 against Ũ/π�̃ over the range from weak
(Ũ/π�̃ � 1) to strong coupling (Ũ/π�̃ = 1) as calculated from the third-order renormalized

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

M
3

~

U/π∆~ ~

Figure 6. The coefficient M̃3 from the third-order renormalized calculation compared with the
exact Bethe ansatz result (dotted line) plotted as a function of Ũ/π�̃.
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perturbation theory and compare it with the exact Bethe ansatz results, expressed in terms
of the renormalized parameters Ũ and �̃. Over the range from U = Ũ = 0 to U = 5π�
(0 < Ũ/π�̃ � 0.9998), �̃/� varies by two orders of magnitude, from 1 to ∼8 × 10−3.

It would be interesting if there were some way of extracting the small h3-correction
from the higher-order diagrams. We have taken account of the contribution from the leading-
order irrelevant term (Ũ ) about the low-energy fixed point to third order, so the remaining
contributions must be related to the next-order irrelevant terms in the effective Hamiltonian at
the Wilson strong-coupling fixed point. These terms must be a combination of local operators
but it is not clear how to relate these explicitly to the higher-order diagrams in the renormalized
perturbation theory.

4. Dynamic response functions in a weak magnetic field

If we calculate theω-dependence of the self-energy as well as the h-dependence we can deduce
the form of the quasiparticle density of states in a weak magnetic field. If we calculate this
as a general function of ω and h, rather than expanding in powers of ω and h, it will be more
convenient to revert to the renormalized expansion as used in section 2 with the explicit use
of counter-terms. This just requires a rearrangement of the terms calculated in the previous
section. Each diagram will now be interpreted as a diagram for the renormalized self-energy
�̃σ (ω, h), withU → Ũ and� → �̃, and ε̃d = −Ũ/2, but we will have to include the counter-
terms to order Ũ 3 to satisfy the renormalization conditions. For the particle–hole-symmetric
model, the only non-zero counter-terms to third order are: λ1 = 0, λ(2)2 = 3 − π2/4 and
λ
(3)
3 = −π�̃(15 − 3π2/2). The only new term to order Ũ 3 is the last term which cancels off

the renormalization of the four-vertex �̃↑,↓(0, 0, 0, 0) shown in figure 5, which is not needed,
as the vertex Ũ is taken to be the fully renormalized one. An alternative way to calculate the
counter-terms is directly from their definitions in terms of the self-energy and vertex functions,
and to re-express these in terms of the renormalized parameters.

The counter-term diagrams are shown in figure 7. The first diagram, figure 7(a), involves
the λ2-vertex, and ensures that the linear term in ω is cancelled off. The next diagram,
figure 7(b), is an additional tadpole contribution arising from the counter-term interaction
λ3. There is also a third-order counter-term diagram, figure 7(c), arising from a combination
of the tadpole diagram to order Ũ with a counter-term vertex λ2 on the bubble. This diagram
gives a contribution

�ct
↑ (ω, h) =

(
3 − π2

4

)
Ũ

(
Ũ

π�̃

)2 ∫
(ω′ + h)(G

(0)
↓ (ω′, h))2 dω′

2π i
. (64)

�
��

�� � �
�� ��

(a) (b) (c)

Figure 7. Counter-term diagrams which contribute to the self-energy to third order in Ũ . The
double-dashed line represents the vertex λ3, the cross represents the vertex λ2 and the single-
dashed line represents Ũ .
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The evaluation of the integral is straightforward and gives

�ct
↑ (ω, h) = �̃

(
3 − π2

4

)(
Ũ

π�̃

)3
[

tan−1

(
h

�̃

)
− �̃h

h2 + �̃2

]
. (65)

If the self-energy to third order from the standard diagrams calculated in the previous
section in terms of the renormalized parameters (U → Ũ ,� → �̃) is written as �(3)

↑ (ω, h),

then the renormalized self-energy to order Ũ 3 is given by

�̃
(3)
↑ (ω, h) = �

(3)
↑ (ω, h) + �̃

(
15 − 3π2

2

)
tan−1

(
h

�̃

)(
Ũ

π�̃

)3

+ (ω + h)

(
3 − π2

4

)(
Ũ

π�̃

)2

− �̃

(
3 − π2

4

) [
tan−1

(
h

�̃

)
− �̃h

h2 + �̃2

] (
Ũ

π�̃

)3

. (66)

One can check that, in the limit ω = 0 and expanded to order h3, this renormalized self-
energy, when substituted into equation (19), gives the same results for the magnetization as
were obtained in the previous section.

In figure 8 we plot the quasiparticle spectral densities in weak and strong coupling as a
function of ω/�̃ for h = 0.15�̃. The peaks in the spectral density shift from ωmax = ±h for
weak coupling to ωmax = ±4h/3 for strong coupling. These are asymptotically exact results
as h → 0, as has been shown by Logan and Dickens [20]. The general result for the position
of the maximum in weak field from their calculation can be written in the form

ωmax = ±2h(1 + Ũ/[π�̃])

2 + (Ũ/[π�̃])2
. (67)

The term in Ũ 2 in the denominator arises from the contribution from the imaginary part of
the self-energy at low frequency. The peak in the spectral density in the strong-coupling
Ũ/π�̃ = 1 or localized limit, is the Kondo resonance, which has a width �̃ = 4TK/π .
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Figure 8. The density of states for ↑ and ↓ quasiparticles in a magnetic field h/�̃ = 0.15 for weak
coupling Ũ/π�̃ = 0.1 (dotted curves) and strong coupling Ũ/π�̃ = 1.0 plotted as a function of
ω/�̃.

There have been a number of recent calculations of the Kondo resonance in a magnetic
field for the Anderson model. The surge of interest in this topic has been due to the recent
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observations of the Kondo effect in quantum dots [21, 22]. These mesoscopic systems can be
described by an impurity Anderson model coupled by leads to two electron reservoirs, and
tunnelling through these dots at very low temperatures is possible due to the presence of the
Kondo resonance. As the parameters in the Anderson model description of a quantum dot
depend upon gate voltages, they can be modified in a much more controlled way than for
real magnetic impurities, which should present a greater range of possibilities for comparing
theory with experiment. There have been numerical renormalization group calculations of
the Kondo resonance in a magnetic field [23, 24], approximate treatments based on the Bethe
ansatz equations [25,26] and also results from the local moment approach [27]. The advantage
of the renormalized perturbation approach is that the results are asymptotically exact in the
limits of small ω and H , and form a useful check on the other methods.

5. Conclusions

We have shown that the renormalized perturbation theory (RPT) approach provides a way
of going beyond the normal limitations of standard perturbation theory. The potential of
this approach has been illustrated in the particular case of the Anderson impurity model,
where we have shown that low-order RPT calculations provide a comprehensive description
of the low-energy, low-temperature range, in the Kondo as well as the weak-coupling regime.
Except in the weak-coupling regime, we do not have explicit expressions for the renormalized
parameters in terms of the bare ones (other than deducing them from the Bethe ansatz results;
see figure 1), but this is also true of other approaches to magnetic impurity problems such as
the conformal field theory [18]. There may be ways of estimating the renormalized parameters
using variational methods, numerically, or by the summing a subset of diagrams, as in the local
moment approach which gives a good approximate interpolation from weak to strong coupling.
The RPT approach does give a clear physical picture of the Fermi-liquid regime, and the low-
order results are asymptotically exact in this limit. This is also the case for other magnetic
impurity models that have been studied, which include degeneracy and extra interactions, such
as a Hund’s rule coupling, and explicit expressions have been derived for the renormalized
interactions in terms of the Kondo temperature, in the strong-coupling limit [7,28]. It provides
a complementary approach to the Wilson style of calculations which involve the explicit
elimination of higher-order excitations [29, 30].

Two obvious questions arise: Can it be applied to lattice models? Is it applicable to
systems with a non-Fermi-liquid fixed point? The method has also already been extended to
translationally invariant systems [31], and related to Fermi-liquid theory. It is an alternative to
the Wilson style of renormalization group approach, which has been applied to translationally
invariant systems at one-loop level by Shankar [32]. There is potential for applications here,
using the technique described in section 3: applying the RPT approach to the strong-coupling
regime for such models as the Hubbard and periodic Anderson models. The complications that
arise for translationally invariant systems and lattice models are mainly due to the dependence
of the self-energy and renormalized vertices on the wave vector k. There should be some
simplification that one could exploit for infinite-dimensional models where the self-energy is
k-independent, and the k-dependence is suppressed at some types of vertex.

The assumption of a finite wavefunction renormalization factor z in the derivation of the
renormalized expansion restricts our treatment to Fermi liquids. Deviations from Fermi-liquid
behaviour can have various causes and each case has to be considered on its own merits. It has
proved possible to generalize the approach to a spinless Luttinger liquid [31], and to the O(3)
symmetric Anderson model, which has a marginal Fermi-liquid fixed point [33].
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Appendix A

There are two types of subdiagrams which correspond to zero-order spin susceptibilities, with
propagators defined by

-pσ,hσ ′
(ω, h) =

∫ ∞

−∞
G(0)

σ (ω + ω′, h)G(0)
σ ′ (ω

′, h)
dω′

2π i
(A.1)

and

-pσ,pσ ′
(ω, h) =

∫ ∞

−∞
G(0)

σ (ω − ω′, h)G(0)
σ ′ (ω

′, h)
dω′

2π i
. (A.2)

These integrals can be evaluated analytically and the results are

-p↑,h↑(ω, h) =




−�

π(h2 + �2)
for ω = 0

�

πω(ω + 2i�)

{
ln

(
ω + i� − h

i� − h

)
+ ln

(
ω + i� + h

i� + h

)}
for ω �= 0.

(A.3)

and

-p↑,h↓(ω, h) =




1

2π�
ln

(
i� − h

i� + h

)
− i

π(i� − h)
for ω = −2h

i
�

π

{
1

ω + 2h + 2i�
ln

(
ω + i� + h

i� + h

)

− 1

ω + 2h
ln

(
ω + i� + h

i� − h

)}
for ω �= −2h.

(A.4)

For particle–hole symmetry, we have -p↑,p↓(ω, h) = −-p↓,h↓(ω, h) and -p↓,h↓(ω, h) =
-p↑,h↑(ω, h) = -p↓,h↓(ω,−h).

Appendix B

In this appendix we take the expression for the magnetization from the exact Bethe ansatz
results of Tsvelik and Wiegmann [16] for the symmetric Anderson model, and deduce a power
series in U for the coefficient of the term in H 3, along the same lines at that originally used
by Horvatić and Zlatić [19] for the order-H term. The result for the magnetization to order h3

can be written in the form

π�M(h)

gµBh
=

(
1 − h2

2u�2

)
eπ

2u/8J1(u) +
h2

2u�2
e3π2u/8J3(u) (B.1)

where u = U/π� where

Jm(u) =
√

2m

πu

∫ ∞

0
e−mx2/2u cos(mπx/2)

1 − x2
dx. (B.2)
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Horvatić and Zlatić have developed a power series in u for J1(u):

J1(u) =
∑
n=0

Cnu
n where Cn = (2n − 1)Cn−1 − π2

4
Cn−2 (B.3)

with C0 = C1 = 1 and C2 = 3 − π2/4. The other coefficients to order u5 are

C3 = 15 − 3π2

4
C4 = 105 − 45π2

4
+
π4

16
C5 = 15

(
63 − 7π2 +

π4

16

)
. (B.4)

We can develop an expansion for J3(u) in a similar way:

J3(u) =
∑
n=0

C̄nu
n where C̄n = (2n − 1)

3
C̄n−1 − π2

4
C̄n−2 (B.5)

with C̄0 = 1, C̄1 = 1/3, C̄2 = 1/3 − π2/4 and

C̄3 = 5

9
− π2

2
C̄4 = 35

27
− 5π2

4
+
π4

16
C̄5 = 5

(
7

9
− 7π2

9
+
π4

16

)
. (B.6)

We can then write the expression for the magnetization to order h3 in the form

π�M(h)

gµBh
=

∑
n=0

Cnu
n − h2

3�2

∑
n=0

Anu
n (B.7)

where An = 3(Cn+1 − C̄n+1)/2 for n � 0. The coefficients of the terms in the second series to
order u4 are A0 = 1, A1 = 4 and

A2 = 65

3
− 3π2

2
A3 = 15

(
280

27
− π2

)
A4 = 15

(
847

9
− 91π2

9
+
π4

16

)
. (B.8)

In the Kondo limit the term proportional to J1(u) does not contribute to the h3-coefficient, and
it can be shown that the asymptotic contribution from the term proportional to J3(u) agrees
with the result for the Kondo model (63) with TK defined by

TK = �

√
πu

2
e−π2/8u+1/2u. (B.9)

We can also use these results to deduce the terms in the renormalized perturbation
calculations to higher orders. We will use this approach to find the fourth-order correction to
our third-order result. We can deduce �̃ and Ũ to fourth order in U from the Bethe ansatz
results for γ and χ . These can be inverted to calculate the bare parameters U and � in terms
of the renormalized ones to the same order in Ũ . The results are

1

�
= 1

�̃

(
1 −

(
3 − π2

4

)
ũ2 −

(
24 +

15π2

4
− 5π4

8

)
ũ4 − · · ·

)
(B.10)

u = ũ

(
1 −

(
12 − 5π2

4

)
ũ3 + O(ũ5)

)
. (B.11)

We can then use the results above for the h3-term magnetization to fourth order in U , and re-
write them in terms of the renormalized parameters. In this way we calculate that the correction
from the fourth-order terms toD′, theH 3-coefficient in the Kondo limit, is −0.24145, which is
10% of the third-order contribution. As the coefficient in the Kondo regime has a factor

√
3, the

exact result cannot be obtained within any finite-order renormalized perturbation calculation,
as results to finite order in Ũ can be expressed as rational functions of the coefficients Cn and
An, and these in turn are rational numbers and powers of π , which cannot generate to finite
order the irrational number

√
3.
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[19] Horvatić B and Zlatić V 1985 J. Physique 46 1459
[20] Logan D E and Dickens N L 2001 J. Phys. Condens. Mat. 43 9713
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